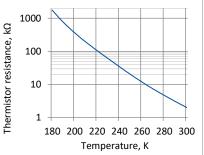

PVI-2TE-6-1×1-TO8-wZnSeAR-36

$3.0 - 6.7 \mu m$ HgCdTe two-stage thermoelectrically cooled, optically immersed photovoltaic detector

PVI-2TE-6-1×1-TO8-wZnSeAR-36 is two-stage thermoelectrically cooled IR photovoltaic detector based on sophisticated HgCdTe heterostructure for the best performance and stability. The device is optimized for the maximum performance at 6 µm. Detector element is monolithically integrated with hyperhemispherical GaAs microlens in order to improve performance of the device. Reverse bias may significantly increase response speed and dynamic range. 3° wedged zinc selenide anti-reflection coated (wZnSeAR) window prevents unwanted interference effects.

Spectral response (T_a = 20°C, V_b = 0 mV)

Exemplary spectral detectivity, the spectral response of delivered devices may differ.


Specification ($T_a = 20^{\circ}C$, $V_b = 0 \text{ mV}$)

Parameter	Detector type
	PVI-2TE-6-1×1-TO8-wZnSeAR-36
Active element material	epitaxial HgCdTe heterostructure
Cut-on wavelength λ_{cut-on} (10%), μ m	3.0±1.0
Peak wavelength λ_{peak} , μm	5.2±0.5
Optimum wavelength λ_{opt} , μm	6.0
Cut-off wavelength $\lambda_{\text{cut-off}}$ (10%), μ m	6.7±0.3
Detectivity D*(λ_{peak}), cm·Hz ^{1/2} /W	≥7.0×10 ¹⁰
Detectivity D*(λ_{opt}), cm·Hz ^{1/2} /W	≥4.0×10 ¹⁰
Current responsivity $R_i(\lambda_{peak})$, A/W	≥2.7
Current responsivity $R_i(\lambda_{opt})$, A/W	≥1.5
Time constant T, ns	≤50
Resistance R, Ω	≥200
Active element temperature T _{det} , K	~230
Optical area A _o , mm×mm	1×1
Package	TO8
Acceptance angle Φ	~36°
Window	wZnSeAR

Two-stage thermoelectric cooler parameters

Parameter	Value
T _{det} , K	~230
V _{max} , V	1.3
I _{max} , A	1.2
Q _{max} , W	0.36

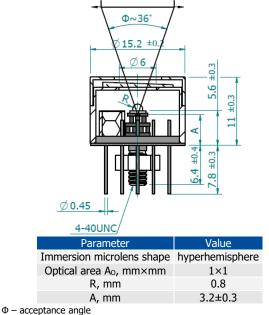
O

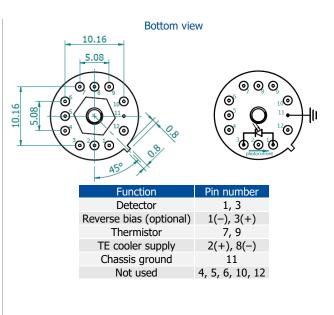
Features

- High performance
- Wide dynamic range
 - Versatility
- Quantity discounted price
- Fast delivery


Applications

- Gas detection, monitoring and analysis (CO, CO₂, NH₃, NO_x)
- Flue gas denitrification
- Fuel combustion monitoring at power plants and other industrial facilities
- Contactless temperature measurements


Related product


UM-I-6 detection module

Spectral transmission of wZnSeAR window (typical example)

Mechanical layout, mm

R – hyperhemisphere microlens radius

-

A - distance from the bottom of the 2TE-TO8 header to the focal plane

Precautions for use and storage

- Standard ohmmeter may overbias and damage the detector. Bias of 10 mV can be used for resistance measurements.
- Heatsink with thermal resistance of ~ 2 K/W is necessary to dissipate heat generated by 2TE cooler.
- Operation in 10% to 80% humidity and -20°C to 30°C ambient temperature.
- Beam power limitations for optically immersed detector:
 - irradiance with CW or single pulse longer than 1 μ s irradiance on the apparent optical active area must not exceed 2.5 W/cm².
 - irradiance of the pulse shorter than 1 µs must not exceed 10 kW/cm².
 - Storage in dark place with 10% to 90% humidity and -20°C to 50°C ambient temperature.