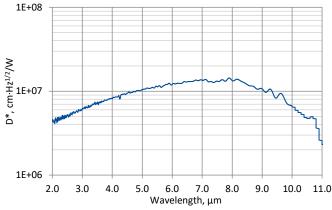


PC-9-AF1×1-TO39-NW-90 - ENGINEERING SAMPLE

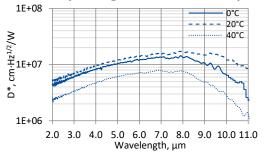

HgCdTe ambient temperature photoconductive detector with anti-fringing

technology

PC-9-AF1×1-TO39-NW-90 is uncooled IR photoconductive detector based on sophisticated HgCdTe heterostructure for the best performance and stability.

In order to make this detector immune to unwanted optical fringing effects, VIGO developed anti-fringing technology (internal modification of substrate's surface) and successfully applied it. This results in the fringing 10 - 40 times smaller compared to the standard IR detector. In order to minimize fringing it is recommended to work with detectors optimized for longer wavelengths and operate below λ_{pesk} .

Spectral response (Typ., T_a = 20°C)

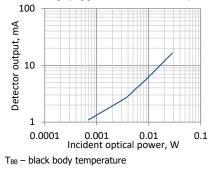


Exemplary spectral detectivity, the spectral response of delivered devices may differ.

Specification (Typ., T_a = 20°C)

Parameter	Detector type
	PC-9-AF1×1-TO39-NW-90
Active element material	epitaxial HgCdTe heterostructure
Cut-on wavelength λ_{cut-on} (10%), µm	2.2±0.1
Peak wavelength λ_{peak} , μm	8.2±0.1
Cut-off wavelength $\lambda_{\text{cut-off}}$ (10%), µm	10.6±0.2
Detectivity D*(λ _{peak} , 20 kHz), cm·Hz ^{1/2} /W	~1.4×10 ⁷
Current responsivity $R_i(\lambda_{peak}, 20 \text{ kHz})$, A/W	~0.0007
Time constant T, ns	~2
Resistance R, Ω	~40
Bias voltage V _b , V	~0.4
1/f noise corner frequency f _c , Hz	~20k
Active area A, mm×mm	AF1×1
Package	TO39
Acceptance angle Φ	~90°
Window	none

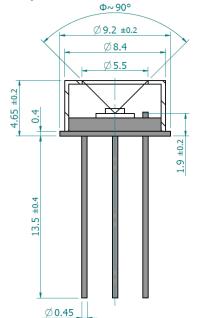
Detectivity change vs. ambient temperature (Typ.)

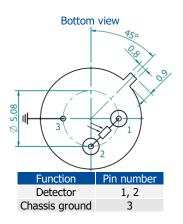

Features

- Anti-fringing technology applied
- Significant fringing reduction for 2.2 8.2 µm spectral range
- Large active area
 Excellent linearity
- Applications
 - CO₂ laser measurements
 - Laser power monitoring and control
 - Laser power monitoring and control
 Laser beam profiling and positioning
 - Laser calibration

Related document

Anti-fringing technology


Linearity (Typ., T_{BB} = 1273 K)



VIGO System S.A. reserves the right to change these specifications at any time without notification. www.vigo.com.pl

Engineering samples are manufactured for purposes of research and development. Values of parameters mentioned in the datasheet are for guidance only and may not be used as guaranteed values.

Mechanical layout, mm

 Φ – acceptance angle

Dedicated preamplifier

small SIP-TO39

Precautions for use and storage

- Operation in 10% to 80% humidity and -20°C to 30°C ambient temperature.
- Beam power limitations:
 - irradiance with CW or single pulse longer than 1 μs irradiance on the apparent optical active area must not exceed 100 W/cm²,
 - irradiance of the pulse shorter than 1 µs must not exceed 1 MW/cm².
- Storage in dark place with 10% to 90% humidity and -20°C to 50°C ambient temperature.