

NIPM-I-10

PRELIMINARY DATASHEET

Balanced/autobalanced IR detection module based on two InAsSb superlattice thermoelectrically cooled optically immersed photovoltaic detectors

FEATURES

- Spectral range: 1.8 to 11.3 µm
- Frequency bandwidth: DC to 2.0 MHz (typ.)
- RoHS-compliant III-V material
- Back-side illuminated
- Unique immersion lens technology applied
- Two channels with similar spectral and frequency characteristics
- Manual switch between balance and autobalance modes
- Integrated two TEC controllers and two fans
- Low-noise performance and high detectivity
- Single power supply
- M6 mounting hole
- Compatible with optical accessories

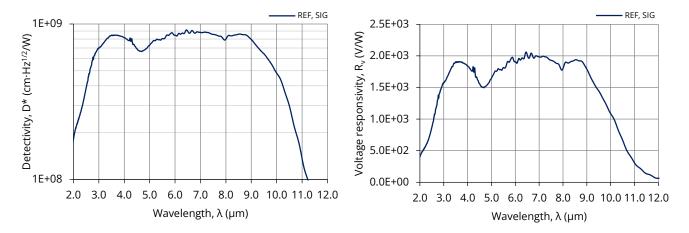
APPLICATIONS

- Gas detection, monitoring and analysis: SO₂, NH₃, SF₆
- Excess noise suppression of Quantum Cascade Laser (QCL) in gas analysis

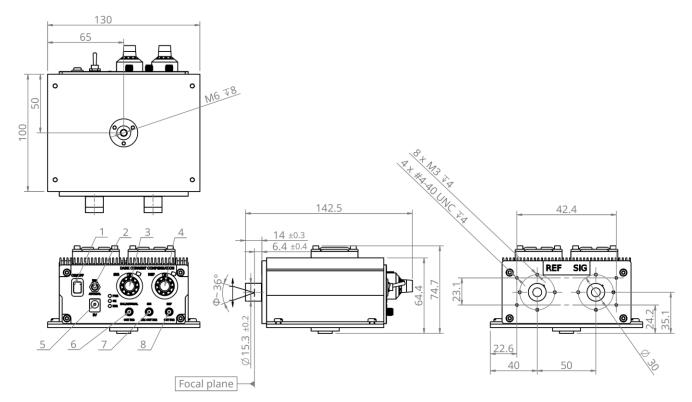
INCLUDED ACCESSORIES

- 3 pcs of SMA-BNC cable
- 1 pc of AC adaptor

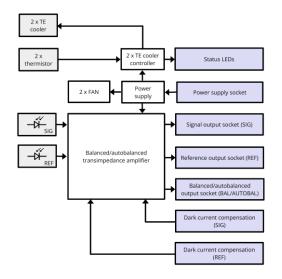
DETECTION MODULE CONFIGURATION


Detection module symbol	NIPM-I-10		
Number of detectors	2 pcs		
Detectors symbol	PVIA-10-1x1-TO8-wZnSeAR-36		
Detectors type	photovoltaic		
Active element material	epitaxial InAsSb superlattice heterostructure		
Optical area, A _o	1 mm × 1 mm		
Optical immersion	yes		
Cooling	4TE (T _{chip} ≃210K)		
Acceptance angle, Φ	~36 deg.		
Window	wZnSeAR (3 deg. zinc selenio anti-reflection coating)		
Amplifier type	two-channel, balanced/autobalanced, transimpedance		
Reference output socket (REF)	SMA		
Signal output socket (SIG)	SMA		
Balance/autobalance socket (BAL/AUTOBAL)	SMA		
Power supply socket	DC 2.1/5.5		

SPECIFICATION (T_{amb} = 293 K, T_{chip} = 210 K, R_{load} = 50 Ω)


Parameter	Test conditions, remarks		Value		
		Min.	Тур.	Max.	Unit
Active element temperature, T _{chip}		-	210	-	К
Cut-on wavelength, λ_{cut-on} (10%)	At 10% of peak responsivity	-	1.8	-	μm
Peak wavelength, λ_{peak}		-	6.7	-	μm
Specific wavelength, λ_{spec}		-	10.0	-	μm
Cut-off wavelength, $\lambda_{\text{cut-off}}$ (10%)	At 10% of peak responsivity	-	11.3	-	μm
Detectivity, D*	REF, at $\lambda = \lambda_{\text{spec}}$, f = 100 kHz	-	8.0×10 ⁸	-	cm·Hz ^{1/2} /W
	SIG, at $\lambda = \lambda_{\text{spec}}$, f = 100 kHz	-	8.0×10 ⁸	-	
Output noise voltage density, vn	REF, at f = 100 kHz	-	400	-	nV/Hz ^{1/2}
	SIG, at f = 100 kHz	-	400	-	
Voltage responsivity, R_v	REF, at $\lambda = \lambda_{\text{spec}}$	-	1.8×10 ³	-	V/W
	SIG, at $\lambda = \lambda_{\text{spec}}$	-	1.8×10 ³	-	
Low cut-off frequency, f _{lo}	DC coupling	-	0	-	Hz
High cut-off frequency, f _{hi}		-	2.0	-	MHz
Output impedance, R _{out}	REF, SIG, BAL/AUTOBAL	-	50	-	Ω
Output voltage swing, V _{out}		-	±0.4	-	V
Output voltage offset, V _{off}		-	±30	-	mV _{DC}
Common mode rejection ratio, CMRR (balance)	REF, at f = 100 kHz	-	-26	-	dB
Common mode rejection ratio, CMRR (auto-balance)	REF, at f = 100 kHz	-	-20	-	dB
Power supply voltage, V _{sup}		-	+9	-	V _{DC}
Power supply current consumption, I _{sup}		-	1.5	-	A

SPECTRAL RESPONSE (Typ., T_{amb} = 293 K, T_{chip} = 210 K, REF and SIG)


MECHANICAL LAYOUT (Unit: mm)

MARKING DESCRIPTION

- 1. Power switch
- 2. Balance/autobalance switch
- 3. Dark current compensation signal
- 4. Dark current compensation reference
- 5. Power supply
- 6. Balance/autobalance output
- Signal output 7.
- Reference output 8.

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Test conditions, remarks	Value	Unit
Ambient operating temperature, Tamb		10 to 30	°C
Storage temperature, T _{stg}		-20 to 50	°C
Minimum time at room temperature before power-up	Applies after storage or transport at temperatures outside ambient range. Required to prevent condensation or damage due to thermal stress	12	h
Humidity	No dew condensation	10 to 90	%
	Continuous wave (CW) or single pulses >1 µs duration	2.5	W/cm ²
Maximum incident optical power density	Single pulses <1 µs duration	10	kW/cm ²

Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. Constant or repeated exposure to absolute maximum rating conditions may affect the quality and reliability of the device.

VIGO Photonics S.A. reserves the right to change these specifications at any time without notification. www.vigophotonics.com