
PV-5-AF series – ENGINEERING SAMPLE

HgCdTe ambient temperature photovoltaic detectors with anti-fringing technology

PV-5-AF series features uncooled IR photovoltaic detector based on sophisticated HgCdTe heterostructure for the best performance and stability.

In order to make this detectors immune to unwanted optical fringing effects, VIGO developed anti-fringing technology (internal modification of substrate's surface) and successfully applied it. This results in the fringing 10 - 40 times smaller compared to the standard IR detector. In order to minimize fringing it is recommended to work with detectors optimized for longer wavelengths and operate below λ_{peak} .

Spectral response (Typ., $T_a = 20$ °C, $V_b = 0$ mV)

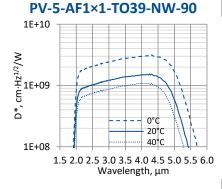
Exemplary spectral detectivity, the spectral response of delivered devices may differ.

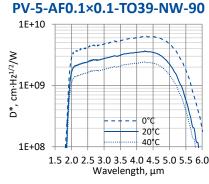
Specification (Typ., $T_a = 20$ °C, $V_b = 0$ mV)

Detector type	
PV-5-AF1×1-TO39-NW-90	PV-5-AF0.1×0.1-TO39-NW-90
epitaxial HgCdTe heterostructure	
2.1±0.2	2.0±0.2
4.4±0.2	4.4±0.2
≥5.3	≥5.3
~1.45×10 ⁹	~3.55×10 ⁹
~0.36	~2.80
~570	~177
~8	~265
AF1×1	AF0.1×0.1
TO39	
~90°	
no	ne
	PV-5-AF1×1-TO39-NW-90 epitaxial HgCdTe 2.1±0.2 4.4±0.2 ≥5.3 ~1.45×10° ~0.36 ~570 ~8 AF1×1 TC ~9

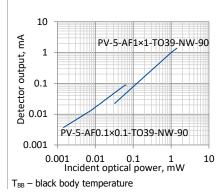
Features

- Anti-fringing technology applied
- Significant fringing reduction for 2.1 – 4.4 μm spectral range
- No bias required
- No 1/f noise

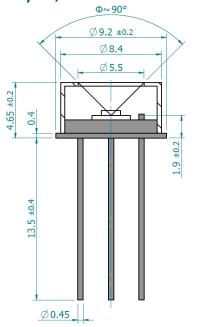

Applications

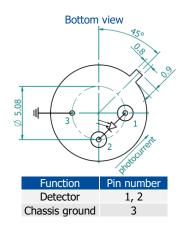

 Gas detection, monitoring and analysis (CO, HF, NH₃, C₂H₂, CH₄, C₂H₆, HCl, H₂CO, SO₂, CO₂, N₂O, NO₃)

Related document


Anti-fringing technology

Detectivity change vs. ambient temperature (Typ.)




Linearity (Typ., $T_{BB} = 1273 \text{ K}$)

Mechanical layout, mm

Φ – acceptance angle

Dedicated preamplifier

small SIP-TO39

Precautions for use and storage

- Operation in 10% to 80% humidity and -20°C to 30°C ambient temperature.
- Beam power limitations:
 - irradiance with CW or single pulse longer than 1 μs irradiance on the apparent optical active area must not exceed 100 W/cm²,
 - irradiance of the pulse shorter than 1 μs must not exceed 1 MW/cm².
- Storage in dark place with 10% to 90% humidity and -20°C to 50°C ambient temperature.